Small-noise approximation for Bayesian optimal experimental design with nuisance uncertainty

نویسندگان

چکیده

Calculating the expected information gain in optimal Bayesian experimental design typically relies on nested Monte Carlo sampling. When model also contains nuisance parameters, which are parameters that contribute to overall uncertainty of system but no interest framework, this introduces a second inner loop. We propose and derive small-noise approximation for additional The computational cost our method can be further reduced by applying Laplace remaining Thus, we present two methods, double-loop methods. Moreover, demonstrate total complexity these approaches remains comparable case without uncertainty. To assess efficiency three examples, last example includes partial differential equation electrical impedance tomography experiment composite laminate materials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Bayesian Optimal Design for Logistic Model

Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...

متن کامل

Prediction uncertainty and optimal experimental design for learning dynamical systems.

Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a p...

متن کامل

Simulation-based optimal Bayesian experimental design for nonlinear systems

The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets...

متن کامل

Numerical Approaches for Sequential Bayesian Optimal Experimental Design

Experimental data play a crucial role in developing and refining models of physical systems. Some experiments can be more valuable than others, however. Well-chosen experiments can save substantial resources, and hence optimal experimental design (OED) seeks to quantify and maximize the value of experimental data. Common current practice for designing a sequence of experiments uses suboptimal a...

متن کامل

An Optimal Approximation Algorithm for Bayesian Inference

Approximating the inference probability Pr X xjE e in any sense even for a single evidence node E is NP hard This result holds for belief networks that are allowed to contain extreme conditional probabilities that is conditional probabilities arbitrarily close to Nevertheless all previous approximation algorithms have failed to approximate e ciently many inferences even for belief networks with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2022

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2022.115320